فابيو لوريا

الآلات التي تتعلم (أيضًا) من أخطائنا تأثير الارتداد: نحن نعلم الذكاء الاصطناعي أخطاءنا فيردها إلينا... أضعافًا مضاعفة!

أبريل 13, 2025
شارك على وسائل التواصل الاجتماعي

بعض الأبحاث الحديثة سلطت الضوء على ظاهرة مثيرة للاهتمام: هناك علاقة "ثنائية" بين التحيزات الموجودة في نماذج الذكاء الاصطناعي وتلك الموجودة في الفكر البشري.

يخلق هذا التفاعل آلية تميل إلى تضخيم التشوهات المعرفية في كلا الاتجاهين.

يُظهر هذا البحث أن أنظمة الذكاء الاصطناعي لا ترث التحيزات البشرية من بيانات التدريب فحسب، بل يمكن أن تزيدها عند تطبيقها مما يؤثر بدوره على عمليات اتخاذ القرار لدى الأشخاص. وهذا يخلق دورة، إذا لم تتم إدارتها بشكل صحيح، فإنها تخاطر بزيادة التحيزات الأولية بشكل تدريجي.

تتضح هذه الظاهرة بشكل خاص في قطاعات مهمة مثل:

في هذه المجالات، قد تتضخم التحيزات الأولية الصغيرة من خلال التفاعلات المتكررة بين المشغلين البشريين والأنظمة الآلية، وتتحول تدريجياً إلى اختلافات كبيرة في النتائج.

أصول التحيز

في الفكر البشري

يستخدم العقل البشري بطبيعة الحال "اختصارات التفكير" التي يمكن أن تدخل أخطاءً منهجية في أحكامنا. نظرية "التفكير المزدوج"يميز بين

  • تفكير سريع وبديهي (عرضة للصور النمطية)
  • تفكير بطيء ومتأمل (قادر على تصحيح التحيزات)

على سبيل المثال، في المجال الطبي، يميل الأطباء في المجال الطبي إلى إعطاء وزن كبير للفرضيات الأولية، وإهمال الأدلة المخالفة. هذه الظاهرة، التي تسمى "التحيز التأكيدي"، تتكرر وتتضخم بواسطة أنظمة الذكاء الاصطناعي المدربة على بيانات التشخيص التاريخية.

في نماذج الذكاء الاصطناعي

تعمل نماذج التعلم الآلي على إدامة التحيزات بشكل رئيسي من خلال ثلاث قنوات:

  1. بيانات التدريب غير المتوازنة التي تعكس عدم المساواة التاريخية
  2. اختيار الخصائص التي تتضمن سمات محمية (مثل الجنس أو العرق)
  3. حلقات التغذية المرتدة الناتجة عن التفاعلات مع القرارات البشرية المشوهة بالفعل

واحد 2024 دراسة أجرتها كلية لندن الجامعية أظهرت أن أنظمة التعرف على الوجوه التي تم تدريبها على الأحكام العاطفية التي يصدرها الأشخاص ورثت ميلاً بنسبة 4.7% لتصنيف الوجوه على أنها "حزينة"، ثم تضخمت هذه النسبة إلى 11.3% في التفاعلات اللاحقة مع المستخدمين.

كيف يضخم كل منهما الآخر

يُظهر تحليل بيانات منصات التوظيف أن كل دورة تعاون بين البشر والخوارزميات تزيد من التحيز بين الجنسين بنسبة 8-14% من خلال آليات التغذية الراجعة التي يعزز بعضها بعضاً.

عندما يتلقى أخصائيو الموارد البشرية من الذكاء الاصطناعي قوائم المرشحين المتأثرين بالفعل بالتحيزات التاريخية، فإن تفاعلاتهم اللاحقة (مثل اختيار أسئلة المقابلات أو تقييمات الأداء) تعزز التمثيلات المشوهة للنموذج.

وجد تحليل تلوي أجري في عام 2025 لـ 47 دراسة أن ثلاث جولات من التعاون بين البشر والوكالة الدولية للطاقة الذرية زادت من التباينات الديموغرافية بمقدار 1.7 إلى 2.3 مرة في مجالات مثل الرعاية الصحية والإقراض والتعليم.

استراتيجيات قياس التحيز والتخفيف من حدته

القياس الكمي من خلال التعلم الآلي

يسمح إطار عمل قياس التحيزات الذي اقترحه دونغ وآخرون (2024) باكتشاف التحيزات دون الحاجة إلى تصنيفات "الحقيقة المطلقة" من خلال تحليل التباينات في أنماط اتخاذ القرار بين المجموعات المحمية.

التدخلات المعرفية

لقد قللت تقنية "المرآة الخوارزمية" التي طورها باحثو كلية لندن الجامعية من التحيز ضد المرأة في قرارات الترقية بنسبة 41% من خلال إظهار ما سيبدو عليه المديرون في اختياراتهم التاريخية إذا تم اتخاذها بواسطة نظام ذكاء اصطناعي.

وقد أثبتت بروتوكولات التدريب التي تتناوب بين المساعدة في اتخاذ القرار من قبل الشؤون الداخلية واتخاذ القرار المستقل أنها واعدة بشكل خاص، حيث قللت من آثار نقل التحيز من 17% إلى 6% في الدراسات التشخيصية السريرية.

الآثار المترتبة على المجتمع

تواجه المؤسسات التي تطبق أنظمة الذكاء الاصطناعي دون مراعاة التفاعلات مع التحيزات البشرية مخاطر قانونية وتشغيلية متزايدة.

يُظهر تحليل لقضايا التمييز في التوظيف أن عمليات التوظيف بمساعدة الذكاء الاصطناعي تزيد من معدلات نجاح المدعين بنسبة 28 في المائة مقارنة بالقضايا التقليدية التي يقودها البشر، حيث توفر آثار القرارات الخوارزمية دليلاً أوضح على التأثير المتباين.

نحو ذكاء اصطناعي يحترم الحرية والكفاءة

إن العلاقة بين التشوهات الخوارزمية والقيود المفروضة على حرية الاختيار تتطلب منا إعادة التفكير في التطور التكنولوجي من منظور المسؤولية الفردية وحماية كفاءة السوق. ومن الأهمية بمكان ضمان أن يصبح الذكاء الاصطناعي أداة لتوسيع الفرص وليس تقييدها.

تتضمن الاتجاهات الواعدة ما يلي:

  • حلول السوق التي تحفز تطوير خوارزميات غير متحيزة
  • شفافية أكبر في عمليات صنع القرار المؤتمتة
  • إلغاء الضوابط التنظيمية لصالح المنافسة بين الحلول التكنولوجية المختلفة

لا يمكننا ضمان استمرار الابتكار التكنولوجي كمحرك للازدهار والفرص لجميع الراغبين في اختبار مهاراتهم إلا من خلال التنظيم الذاتي المسؤول للصناعة، إلى جانب حرية الاختيار للمستخدمين.

فابيو لوريا

الرئيس التنفيذي والمؤسس | Electe

الرئيس التنفيذي لشركة Electe أساعد الشركات الصغيرة والمتوسطة على اتخاذ قرارات قائمة على البيانات. أكتب عن الذكاء الاصطناعي في عالم الأعمال.

الأكثر شعبية
اشترك للحصول على آخر الأخبار

استقبل الأخبار والأفكار الأسبوعية في صندوق الوارد الخاص بك
. لا تفوّت الفرصة!

شكراً لك! لقد تم استلام طلبك!
عفوًا، حدث خطأ ما أثناء إرسال النموذج.