Newsletter

لماذا الرياضيات صعبة (حتى لو كنت من الذكاء الاصطناعي)

النماذج اللغوية لا تعرف كيف تضاعف حفظ النتائج بالطريقة التي نحفظ بها الباي (pi)، ولكن هذا لا يجعلها رياضيات. المشكلة هيكلية: فهي تتعلم عن طريق التشابه الإحصائي، وليس عن طريق الفهم الخوارزمي. حتى "النماذج المنطقية" الجديدة مثل o1 تفشل في المهام التافهة: فهي تحسب بشكل صحيح حرف "r" في كلمة "فراولة" بعد ثوانٍ من المعالجة، ولكنها تفشل عندما يتعين عليها كتابة فقرة حيث يشكل الحرف الثاني من كل جملة كلمة. يستغرق الإصدار المميز الذي تبلغ تكلفته 200 دولار شهرياً أربع دقائق لحل ما يقوم به الطفل على الفور. لا يزال DeepSeek و Mistral في عام 2025 يخطئان في عد الحروف. الحل الناشئ؟ نهج هجين - لقد اكتشفت أذكى النماذج متى تستدعي آلة حاسبة حقيقية بدلاً من محاولة إجراء العملية الحسابية بنفسها. نقلة نوعية: ليس من الضروري أن يعرف الذكاء الاصطناعي كيفية القيام بكل شيء ولكن يجب أن ينظم الأدوات الصحيحة. مفارقة أخيرة: يمكن لـ GPT-4 أن يشرح لك ببراعة نظرية النهايات ولكنه يخطئ في عمليات الضرب التي تحلّها آلة حاسبة الجيب بشكل صحيح دائماً. بالنسبة لتعليم الرياضيات فهي ممتازة - تشرح بصبر لا متناهٍ، وتكيّف الأمثلة، وتحلل المنطق المعقد. للعمليات الحسابية الدقيقة؟ اعتمد على الآلة الحاسبة، وليس على الذكاء الاصطناعي.

يعتمد الكثيرون على LLM أيضًا لإجراء العمليات الحسابية. هذا النهج لا يعمل .

المشكلة في الواقع بسيطة: النماذج اللغوية الكبيرة (LLM) لا تعرف حقًا كيفية الضرب. قد يحصلون على النتيجة الصحيحة في بعض الأحيان، تمامًا كما قد أعرف قيمة pi عن ظهر قلب. ولكن هذا لا يعني أنني عالم رياضيات، كما أنه لا يعني أن النماذج اللغوية الكبيرة (LLM) تعرف حقًا كيفية إجراء العمليات الحسابية.

مثال عملي

مثال: 49858 * 59949 = 298896167242 هذه النتيجة هي نفسها دائمًا، لا يوجد حل وسط. إما أن تكون صحيحة أو خاطئة.

حتى مع التدريب الرياضي الهائل، تنجح أفضل النماذج في حل جزء فقط من العمليات بشكل صحيح. من ناحية أخرى، تحصل حاسبة الجيب البسيطة على 100% من النتائج الصحيحة دائمًا. وكلما زادت الأرقام، كلما كان أداء الآلة الحاسبة البسيطة أسوأ.

هل من الممكن حل هذه المشكلة؟

المشكلة الأساسية هي أن هذه النماذج تتعلم بالتشابه وليس بالفهم. فهي تعمل بشكل أفضل مع المشاكل المماثلة لتلك التي تم تدريبها عليها، ولكنها لا تطور فهمًا حقيقيًا لما تقوله.

بالنسبة لأولئك الذين يرغبون في معرفة المزيد، أقترح هذا المقال عن "كيف يعمل برنامج الماجستير في القانون".

من ناحية أخرى، تستخدم الآلة الحاسبة خوارزمية دقيقة مبرمجة لإجراء العملية الحسابية.

هذا هو السبب في أننا يجب ألا نعتمد بشكل كامل على LLMs في العمليات الحسابية: حتى في ظل أفضل الظروف، مع وجود كميات هائلة من بيانات التدريب المحددة، لا يمكنها ضمان الموثوقية حتى في أبسط العمليات الأساسية. قد تنجح المقاربة الهجينة، لكن LLMs وحدها لا تكفي. ربما سيتم اتباع هذا النهج لحل ما يسمى بـ"مشكلة الفراولة".

تطبيقات ماجستير الآداب في دراسة الرياضيات

في السياق التعليمي، يمكن أن تعمل أجهزة إدارة التعلم الآلي كمدرسين مخصصين قادرين على تكييف التفسيرات مع مستوى فهم الطالب. على سبيل المثال، عندما يواجه الطالب مشكلة في حساب التفاضل والتكامل، يمكن أن يقوم معلم اللغة الإنجليزية المساعد بتقسيم المنطق إلى خطوات أبسط، مع تقديم شروح مفصلة لكل خطوة من خطوات عملية الحل. يساعد هذا النهج في بناء فهم قوي للمفاهيم الأساسية.

أحد الجوانب المثيرة للاهتمام بشكل خاص هو قدرة LLMs على توليد أمثلة ذات صلة ومتنوعة. إذا كان الطالب يحاول فهم مفهوم النهاية، فيمكن لـ LLM تقديم سيناريوهات رياضية مختلفة، بدءًا من الحالات البسيطة والتقدم إلى حالات أكثر تعقيدًا، مما يتيح فهمًا تدريجيًا للمفهوم.

يتمثل أحد التطبيقات الواعدة في استخدام لغة اللغة الإنجليزية الفورية لترجمة المفاهيم الرياضية المعقدة إلى لغة طبيعية يسهل الوصول إليها. وهذا يسهل توصيل الرياضيات إلى جمهور أوسع ويمكن أن يساعد في التغلب على الحاجز التقليدي للوصول إلى هذا التخصص.

كما يمكن أن تساعد أجهزة LLMs أيضًا في إعداد المواد التعليمية، وتوليد تمارين متفاوتة الصعوبة وتقديم ملاحظات مفصلة حول الحلول المقترحة من الطلاب. يتيح ذلك للمعلمين تخصيص مسار التعلم لطلابهم بشكل أفضل.

الميزة الحقيقية

كما يجب النظر، بشكل أعم، إلى "الصبر" الشديد في مساعدة حتى أقل الطلاب "قدرة" على التعلم: في هذه الحالة، يساعد غياب العواطف في هذه الحالة. على الرغم من ذلك، حتى المعلم "يفقد صبره" أحيانًا. انظر هذا المثال "المسلي المثال.

تحديث 2025: النماذج المنطقية والنهج الهجين

جلب 2024-2025 تطورات مهمة مع وصول ما يسمى "نماذج التفكير" مثل OpenAI o1 و deepseek R1. وقد حققت هذه النماذج نتائج مبهرة في المعايير الرياضية: حيث حلّ o1 بشكل صحيح 83% من المسائل في الأولمبياد الدولي للرياضيات، مقارنةً بـ 13% في GPT-4o. ولكن احذر: لم يحلوا المشكلة الأساسية الموضحة أعلاه.

توضح مشكلة الفراولة - عدّ حرف الراء في كلمة "فراولة" - القيد المستمر بشكل مثالي. o1 يحلها بشكل صحيح بعد بضع ثوانٍ من "التفكير"، ولكن إذا طلبت منه كتابة فقرة حيث يشكل الحرف الثاني من كل جملة كلمة "CODE"، فإنه يفشل. o1-pro، الإصدار 200 دولار في الشهر، يحلها... بعد 4 دقائق من المعالجة. لا تزال DeepSeek R1 والنماذج الحديثة الأخرى تخطئ في العد الأساسي. في فبراير 2025، ظل ميسترال يجيب على أنه لا يوجد سوى حرفين "r" في كلمة "فراولة".

الحيلة التي بدأت في الظهور هي النهج الهجين: عندما يتعين عليهم ضرب 49858 في 5994949، لم تعد النماذج الأكثر تقدماً تحاول "تخمين" النتيجة بناءً على أوجه التشابه مع العمليات الحسابية التي شوهدت أثناء التدريب. وبدلاً من ذلك، فإنها تتصل بالآلة الحاسبة أو تنفذ كود بايثون - تماماً كما يفعل الإنسان الذكي الذي يعرف حدوده.

ويمثل "استخدام الأدوات" هذا نقلة نوعية: لا يجب أن يكون الذكاء الاصطناعي قادراً على القيام بكل شيء بنفسه، بل يجب أن يكون قادراً على تنسيق الأدوات المناسبة. تجمع نماذج التفكير بين القدرة اللغوية لفهم المشكلة، والتفكير التدريجي لتخطيط الحل، والتفويض إلى الأدوات المتخصصة (الآلات الحاسبة، ومترجمي بايثون، وقواعد البيانات) للتنفيذ الدقيق.

الدرس المستفاد؟ إن أصحاب الرتب العليا في عام 2025 أكثر فائدة في الرياضيات ليس لأنهم"تعلموا" الضرب - فهم لم يفعلوا ذلك بالفعل بعد - ولكن لأن بعضهم بدأ يفهم متى يفوضون الضرب لمن يستطيع القيام به بالفعل. وتبقى المشكلة الأساسية: فهم يعملون بالتشابه الإحصائي وليس بالفهم الخوارزمي. وتظل الآلة الحاسبة ذات الـ 5 يورو أكثر موثوقية بلا حدود لإجراء عمليات حسابية دقيقة.

موارد لنمو الأعمال التجارية

9 نوفمبر 2025

تنظيم الذكاء الاصطناعي لتطبيقات المستهلك: كيفية الاستعداد للوائح الجديدة لعام 2025

يمثل عام 2025 نهاية حقبة "الغرب المتوحش" للذكاء الاصطناعي: قانون الذكاء الاصطناعي في الاتحاد الأوروبي الذي يبدأ العمل به اعتبارًا من أغسطس 2024 مع التزامات محو أمية الذكاء الاصطناعي اعتبارًا من 2 فبراير 2025، والحوكمة ومبادرة الحوكمة العالمية للذكاء الاصطناعي اعتبارًا من 2 أغسطس. كاليفورنيا رائدة من خلال SB 243 (وُلدت بعد انتحار سيويل سيتزر، طفل يبلغ من العمر 14 عامًا طور علاقة عاطفية مع روبوت الدردشة) يفرض حظرًا على أنظمة المكافأة القهرية، والكشف عن التفكير في الانتحار، والتذكير كل 3 ساعات "أنا لست إنسانًا"، والتدقيق العام المستقل، وعقوبات بقيمة 1000 دولار/مخالفة. يتطلب SB 420 تقييمات الأثر لـ "القرارات المؤتمتة عالية الخطورة" مع حقوق استئناف المراجعة البشرية. الإنفاذ الفعلي: تم الاستشهاد بنوم 2022 عن الروبوتات التي تم تمريرها كمدربين بشريين، تسوية 56 مليون دولار. الاتجاه الوطني: ألاباما وهاواي وإلينوي وماين وماساتشوستس تصنف الفشل في إخطار روبوتات الدردشة الآلية التي تعمل بالذكاء الاصطناعي على أنه انتهاك لقانون UDAP. نهج الأنظمة ذات المخاطر الحرجة ثلاثي المستويات (الرعاية الصحية/النقل/الطاقة) اعتماد ما قبل النشر، والإفصاح الشفاف الذي يواجه المستهلك، والتسجيل للأغراض العامة + اختبار الأمان. الترقيع التنظيمي بدون استباق فيدرالي: يجب على الشركات متعددة الولايات التنقل بين المتطلبات المتغيرة. الاتحاد الأوروبي اعتبارًا من أغسطس 2026: إبلاغ المستخدمين بالتفاعل مع الذكاء الاصطناعي ما لم يكن واضحًا، والمحتوى الذي يتم إنشاؤه بواسطة الذكاء الاصطناعي مصنفًا على أنه قابل للقراءة آليًا.
9 نوفمبر 2025

تنظيم ما لم يتم إنشاؤه: هل تخاطر أوروبا بعدم ملاءمة التكنولوجيا؟

تجتذب أوروبا عُشر الاستثمارات العالمية في مجال الذكاء الاصطناعي ولكنها تدعي أنها تملي القواعد العالمية. هذا هو "تأثير بروكسل" - فرض القواعد على نطاق الكوكب من خلال قوة السوق دون دفع الابتكار. يدخل قانون الذكاء الاصطناعي حيز التنفيذ وفق جدول زمني متدرج حتى عام 2027، لكن شركات التكنولوجيا متعددة الجنسيات تستجيب باستراتيجيات تهرب مبتكرة: التذرع بالأسرار التجارية لتجنب الكشف عن بيانات التدريب، وإنتاج ملخصات متوافقة تقنياً ولكنها غير مفهومة، واستخدام التقييم الذاتي لخفض مستوى الأنظمة من "عالية المخاطر" إلى "قليلة المخاطر"، والتسوق من خلال اختيار الدول الأعضاء ذات الضوابط الأقل صرامة. مفارقة حقوق النشر خارج الحدود الإقليمية: يطالب الاتحاد الأوروبي بأن تمتثل OpenAI للقوانين الأوروبية حتى بالنسبة للتدريب خارج أوروبا - وهو مبدأ لم يسبق له مثيل في القانون الدولي. ظهور "النموذج المزدوج": إصدارات أوروبية محدودة مقابل إصدارات عالمية متقدمة من منتجات الذكاء الاصطناعي نفسها. الخطر الحقيقي: أن تصبح أوروبا "قلعة رقمية" معزولة عن الابتكار العالمي، مع وصول المواطنين الأوروبيين إلى تقنيات أقل شأناً. لقد رفضت محكمة العدل في قضية تسجيل الائتمان بالفعل دفاع "الأسرار التجارية"، ولكن لا يزال عدم اليقين التفسيري هائلاً - ماذا يعني بالضبط "ملخص مفصل بما فيه الكفاية"؟ لا أحد يعرف. السؤال الأخير الذي لم تتم الإجابة عليه: هل يخلق الاتحاد الأوروبي طريقًا ثالثًا أخلاقيًا بين الرأسمالية الأمريكية وسيطرة الدولة الصينية، أم أنه ببساطة يصدّر البيروقراطية إلى مجال لا ينافسه فيه أحد؟ في الوقت الحالي: رائد عالمي في تنظيم الذكاء الاصطناعي، وهامشي في تطويره. برنامج واسع.
9 نوفمبر 2025

القيم المتطرفة: حيث يلتقي علم البيانات مع قصص النجاح

لقد قلب علم البيانات النموذج رأساً على عقب: لم تعد القيم المتطرفة "أخطاء يجب التخلص منها" بل معلومات قيّمة يجب فهمها. يمكن أن يؤدي وجود قيمة متطرفة واحدة إلى تشويه نموذج الانحدار الخطي تمامًا - تغيير الميل من 2 إلى 10 - ولكن التخلص منها قد يعني فقدان أهم إشارة في مجموعة البيانات. يقدم التعلم الآلي أدوات متطورة: تقوم غابة العزل بعزل القيم المتطرفة من خلال بناء أشجار قرار عشوائية، ويقوم عامل التطرف المحلي بتحليل الكثافة المحلية، وتقوم أجهزة الترميز التلقائي بإعادة بناء البيانات العادية والإبلاغ عما لا تستطيع إعادة إنتاجه. هناك قيم متطرفة عالمية (درجة الحرارة -10 درجات مئوية في المناطق الاستوائية)، وقيم متطرفة سياقية (إنفاق 1000 يورو في حي فقير)، وقيم متطرفة جماعية (شبكة حركة المرور المتزامنة التي تشير إلى حدوث هجوم). بالتوازي مع غلادويل: "قاعدة الـ 10,000 ساعة" محل جدل - بول مكارتني ديكسيت "العديد من الفرق الموسيقية قامت بـ 10,000 ساعة في هامبورغ دون نجاح، النظرية ليست معصومة". النجاح الحسابي الآسيوي ليس وراثيًا بل ثقافيًا: النظام العددي الصيني أكثر بديهية، زراعة الأرز تتطلب تحسينًا مستمرًا مقابل التوسع الإقليمي للزراعة الغربية. تطبيقات حقيقية: تستعيد بنوك المملكة المتحدة 18% من الخسائر المحتملة من خلال الكشف عن الشذوذ في الوقت الحقيقي، ويكتشف التصنيع العيوب المجهرية التي قد يفوتها الفحص البشري، وتتحقق الرعاية الصحية من صحة بيانات التجارب السريرية بحساسية تزيد عن 85% من كشف الشذوذ. الدرس الأخير: مع انتقال علم البيانات من القضاء على القيم المتطرفة إلى فهمها، يجب أن ننظر إلى المهن غير التقليدية ليس على أنها حالات شاذة يجب تصحيحها ولكن كمسارات قيّمة يجب دراستها.