Newsletter

لماذا الرياضيات صعبة (حتى لو كنت من الذكاء الاصطناعي)

النماذج اللغوية لا تعرف كيف تضاعف حفظ النتائج بالطريقة التي نحفظ بها الباي (pi)، ولكن هذا لا يجعلها رياضيات. المشكلة هيكلية: فهي تتعلم عن طريق التشابه الإحصائي، وليس عن طريق الفهم الخوارزمي. حتى "النماذج المنطقية" الجديدة مثل o1 تفشل في المهام التافهة: فهي تحسب بشكل صحيح حرف "r" في كلمة "فراولة" بعد ثوانٍ من المعالجة، ولكنها تفشل عندما يتعين عليها كتابة فقرة حيث يشكل الحرف الثاني من كل جملة كلمة. يستغرق الإصدار المميز الذي تبلغ تكلفته 200 دولار شهرياً أربع دقائق لحل ما يقوم به الطفل على الفور. لا يزال DeepSeek و Mistral في عام 2025 يخطئان في عد الحروف. الحل الناشئ؟ نهج هجين - لقد اكتشفت أذكى النماذج متى تستدعي آلة حاسبة حقيقية بدلاً من محاولة إجراء العملية الحسابية بنفسها. نقلة نوعية: ليس من الضروري أن يعرف الذكاء الاصطناعي كيفية القيام بكل شيء ولكن يجب أن ينظم الأدوات الصحيحة. مفارقة أخيرة: يمكن لـ GPT-4 أن يشرح لك ببراعة نظرية النهايات ولكنه يخطئ في عمليات الضرب التي تحلّها آلة حاسبة الجيب بشكل صحيح دائماً. بالنسبة لتعليم الرياضيات فهي ممتازة - تشرح بصبر لا متناهٍ، وتكيّف الأمثلة، وتحلل المنطق المعقد. للعمليات الحسابية الدقيقة؟ اعتمد على الآلة الحاسبة، وليس على الذكاء الاصطناعي.

يعتمد الكثيرون على LLM أيضًا لإجراء العمليات الحسابية. هذا النهج لا يعمل .

المشكلة في الواقع بسيطة: النماذج اللغوية الكبيرة (LLM) لا تعرف حقًا كيفية الضرب. قد يحصلون على النتيجة الصحيحة في بعض الأحيان، تمامًا كما قد أعرف قيمة pi عن ظهر قلب. ولكن هذا لا يعني أنني عالم رياضيات، كما أنه لا يعني أن النماذج اللغوية الكبيرة (LLM) تعرف حقًا كيفية إجراء العمليات الحسابية.

مثال عملي

مثال: 49858 * 59949 = 298896167242 هذه النتيجة هي نفسها دائمًا، لا يوجد حل وسط. إما أن تكون صحيحة أو خاطئة.

حتى مع التدريب الرياضي الهائل، تنجح أفضل النماذج في حل جزء فقط من العمليات بشكل صحيح. من ناحية أخرى، تحصل حاسبة الجيب البسيطة على 100% من النتائج الصحيحة دائمًا. وكلما زادت الأرقام، كلما كان أداء الآلة الحاسبة البسيطة أسوأ.

هل من الممكن حل هذه المشكلة؟

المشكلة الأساسية هي أن هذه النماذج تتعلم بالتشابه وليس بالفهم. فهي تعمل بشكل أفضل مع المشاكل المماثلة لتلك التي تم تدريبها عليها، ولكنها لا تطور فهمًا حقيقيًا لما تقوله.

بالنسبة لأولئك الذين يرغبون في معرفة المزيد، أقترح هذا المقال عن "كيف يعمل برنامج الماجستير في القانون".

من ناحية أخرى، تستخدم الآلة الحاسبة خوارزمية دقيقة مبرمجة لإجراء العملية الحسابية.

هذا هو السبب في أننا يجب ألا نعتمد بشكل كامل على LLMs في العمليات الحسابية: حتى في ظل أفضل الظروف، مع وجود كميات هائلة من بيانات التدريب المحددة، لا يمكنها ضمان الموثوقية حتى في أبسط العمليات الأساسية. قد تنجح المقاربة الهجينة، لكن LLMs وحدها لا تكفي. ربما سيتم اتباع هذا النهج لحل ما يسمى بـ"مشكلة الفراولة".

تطبيقات ماجستير الآداب في دراسة الرياضيات

في السياق التعليمي، يمكن أن تعمل أجهزة إدارة التعلم الآلي كمدرسين مخصصين قادرين على تكييف التفسيرات مع مستوى فهم الطالب. على سبيل المثال، عندما يواجه الطالب مشكلة في حساب التفاضل والتكامل، يمكن أن يقوم معلم اللغة الإنجليزية المساعد بتقسيم المنطق إلى خطوات أبسط، مع تقديم شروح مفصلة لكل خطوة من خطوات عملية الحل. يساعد هذا النهج في بناء فهم قوي للمفاهيم الأساسية.

أحد الجوانب المثيرة للاهتمام بشكل خاص هو قدرة LLMs على توليد أمثلة ذات صلة ومتنوعة. إذا كان الطالب يحاول فهم مفهوم النهاية، فيمكن لـ LLM تقديم سيناريوهات رياضية مختلفة، بدءًا من الحالات البسيطة والتقدم إلى حالات أكثر تعقيدًا، مما يتيح فهمًا تدريجيًا للمفهوم.

يتمثل أحد التطبيقات الواعدة في استخدام لغة اللغة الإنجليزية الفورية لترجمة المفاهيم الرياضية المعقدة إلى لغة طبيعية يسهل الوصول إليها. وهذا يسهل توصيل الرياضيات إلى جمهور أوسع ويمكن أن يساعد في التغلب على الحاجز التقليدي للوصول إلى هذا التخصص.

كما يمكن أن تساعد أجهزة LLMs أيضًا في إعداد المواد التعليمية، وتوليد تمارين متفاوتة الصعوبة وتقديم ملاحظات مفصلة حول الحلول المقترحة من الطلاب. يتيح ذلك للمعلمين تخصيص مسار التعلم لطلابهم بشكل أفضل.

الميزة الحقيقية

كما يجب النظر، بشكل أعم، إلى "الصبر" الشديد في مساعدة حتى أقل الطلاب "قدرة" على التعلم: في هذه الحالة، يساعد غياب العواطف في هذه الحالة. على الرغم من ذلك، حتى المعلم "يفقد صبره" أحيانًا. انظر هذا المثال "المسلي المثال.

تحديث 2025: النماذج المنطقية والنهج الهجين

جلب 2024-2025 تطورات مهمة مع وصول ما يسمى "نماذج التفكير" مثل OpenAI o1 و deepseek R1. وقد حققت هذه النماذج نتائج مبهرة في المعايير الرياضية: حيث حلّ o1 بشكل صحيح 83% من المسائل في الأولمبياد الدولي للرياضيات، مقارنةً بـ 13% في GPT-4o. ولكن احذر: لم يحلوا المشكلة الأساسية الموضحة أعلاه.

توضح مشكلة الفراولة - عدّ حرف الراء في كلمة "فراولة" - القيد المستمر بشكل مثالي. o1 يحلها بشكل صحيح بعد بضع ثوانٍ من "التفكير"، ولكن إذا طلبت منه كتابة فقرة حيث يشكل الحرف الثاني من كل جملة كلمة "CODE"، فإنه يفشل. o1-pro، الإصدار 200 دولار في الشهر، يحلها... بعد 4 دقائق من المعالجة. لا تزال DeepSeek R1 والنماذج الحديثة الأخرى تخطئ في العد الأساسي. في فبراير 2025، ظل ميسترال يجيب على أنه لا يوجد سوى حرفين "r" في كلمة "فراولة".

الحيلة التي بدأت في الظهور هي النهج الهجين: عندما يتعين عليهم ضرب 49858 في 5994949، لم تعد النماذج الأكثر تقدماً تحاول "تخمين" النتيجة بناءً على أوجه التشابه مع العمليات الحسابية التي شوهدت أثناء التدريب. وبدلاً من ذلك، فإنها تتصل بالآلة الحاسبة أو تنفذ كود بايثون - تماماً كما يفعل الإنسان الذكي الذي يعرف حدوده.

ويمثل "استخدام الأدوات" هذا نقلة نوعية: لا يجب أن يكون الذكاء الاصطناعي قادراً على القيام بكل شيء بنفسه، بل يجب أن يكون قادراً على تنسيق الأدوات المناسبة. تجمع نماذج التفكير بين القدرة اللغوية لفهم المشكلة، والتفكير التدريجي لتخطيط الحل، والتفويض إلى الأدوات المتخصصة (الآلات الحاسبة، ومترجمي بايثون، وقواعد البيانات) للتنفيذ الدقيق.

الدرس المستفاد؟ إن أصحاب الرتب العليا في عام 2025 أكثر فائدة في الرياضيات ليس لأنهم"تعلموا" الضرب - فهم لم يفعلوا ذلك بالفعل بعد - ولكن لأن بعضهم بدأ يفهم متى يفوضون الضرب لمن يستطيع القيام به بالفعل. وتبقى المشكلة الأساسية: فهم يعملون بالتشابه الإحصائي وليس بالفهم الخوارزمي. وتظل الآلة الحاسبة ذات الـ 5 يورو أكثر موثوقية بلا حدود لإجراء عمليات حسابية دقيقة.

موارد لنمو الأعمال التجارية

9 نوفمبر 2025

Electe: حوِّل بياناتك إلى تنبؤات دقيقة لنجاح أعمالك

الشركات التي تتنبأ باتجاهات السوق تتفوق على المنافسين، ولكن الغالبية لا تزال تتخذ قراراتها بناءً على الغريزة بدلاً من Electe على حل هذه الفجوة من خلال تحويل البيانات التاريخية إلى تنبؤات قابلة للتنفيذ عبر التعلم الآلي المتقدم دون الحاجة إلى خبرة فنية. تعمل المنصة على أتمتة عملية التنبؤ بشكل كامل لحالات الاستخدام الحرجة: التنبؤ باتجاهات المستهلكين للتسويق المستهدف، وتحسين إدارة المخزون من خلال توقع الطلب، وتخصيص الموارد بشكل استراتيجي، واكتشاف الفرص قبل المنافسين. التنفيذ في 4 خطوات - تحميل البيانات التاريخية بدون احتكاك - تحميل البيانات التاريخية، واختيار المؤشرات لتحليلها، وخوارزميات معالجة التنبؤات، واستخدام الرؤى لاتخاذ القرارات الاستراتيجية - تتكامل بسلاسة مع العمليات الحالية. عائد استثمار قابل للقياس من خلال خفض التكلفة عن طريق التخطيط الدقيق، وزيادة سرعة اتخاذ القرار، وتقليل المخاطر التشغيلية، وتحديد فرص النمو الجديدة. يؤدي التطور من التحليل الوصفي (ما حدث) إلى التحليل التنبؤي (ما سيحدث) إلى تحويل الشركات من رد الفعل إلى الاستباقي، مما يجعلها رائدة في الصناعة من خلال الميزة التنافسية القائمة على التنبؤات الدقيقة.
9 نوفمبر 2025

المفارقة التوليدية للذكاء الاصطناعي: كيف تكرر الشركات نفس الأخطاء على مدار 30 عامًا

78% من الشركات التي طبقت الذكاء الاصطناعي التوليدي و78% منها لم تحقق أي تأثير على الأرباح - لماذا؟ نفس الخطأ الذي حدث خلال الـ 30 عامًا الماضية: أقراص مدمجة للكتالوجات الورقية، ومواقع إلكترونية-كتيبات ومواقع الكترونية-مواقع إلكترونية، والهاتف المحمول=تقليص حجم سطح المكتب، والرقمي=الورقي الممسوح ضوئيًا. 2025: يستخدمون ChatGPT لكتابة رسائل البريد الإلكتروني بشكل أسرع بدلاً من التخلص من 70% من رسائل البريد الإلكتروني من خلال إعادة التفكير في التواصل. أرقام الفشل: 92% سيزيدون استثماراتهم في الذكاء الاصطناعي ولكن 1% فقط لديهم تطبيقات ناضجة، و90% من التطبيقات التجريبية لا تصل إلى مرحلة الإنتاج، و109.1 مليار دولار أمريكي مستثمرة في عام 2024. دراسة حالة حقيقية (200 موظف): من 2100 رسالة بريد إلكتروني/اليوم إلى 630 في 5 أشهر من خلال استبدال تحديثات الحالة بلوحات معلومات مباشرة، والموافقات بسير العمل الآلي، وتنسيق الاجتماعات بجدولة الذكاء الاصطناعي، ومشاركة المعلومات بقاعدة المعرفة الذكية - العائد على الاستثمار في 3 أشهر. يحصل قادة الذكاء الاصطناعي الذين يبدأون من الصفر على نمو في الإيرادات بمقدار 1.5 ضعفاً وعائدات المساهمين بمقدار 1.6 ضعفاً. إطار عمل مضاد للمفارقة: التدقيق الوحشي ("هل سيكون هذا موجودًا إذا أعدت البناء من الصفر؟"، الإزالة الجذرية، إعادة البناء بالذكاء الاصطناعي أولاً. السؤال الخاطئ: "كيف نضيف الذكاء الاصطناعي؟ السؤال الصحيح: "إذا أعدنا البناء من الصفر اليوم؟"